Probabilistic Conformance for Cyber-Physical Systems

3 Aug 2020  ·  Yu Wang, Mojtaba Zarei, Borzoo Bonakdarpoor, Miroslav Pajic ·

In system analysis, conformance indicates that two systems simultaneously satisfy the same set of specifications of interest; thus, the results from analyzing one system automatically transfer to the other, or one system can safely replace the other in practice. In this work, we study the probabilistic conformance of cyber-physical systems (CPS). We propose a notion of (approximate) probabilistic conformance for sets of complex specifications expressed by the Signal Temporal Logic (STL). Based on a novel statistical test, we develop the first statistical verification methods for the probabilistic conformance of a wide class of CPS. Using this method, we verify the conformance of the startup time of the widely-used full and simplified model of Toyota powertrain systems, the settling time of model-predictive-control-based and neural-network-based automotive lane-keeping controllers, as well as the maximal voltage deviation of full and simplified power grid systems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here