Probabilistic Variational Bounds for Graphical Models

NeurIPS 2015 Qiang LiuJohn W. Fisher IiiAlexander T. Ihler

Variational algorithms such as tree-reweighted belief propagation can provide deterministic bounds on the partition function, but are often loose and difficult to use in an ``any-time'' fashion, expending more computation for tighter bounds. On the other hand, Monte Carlo estimators such as importance sampling have excellent any-time behavior, but depend critically on the proposal distribution... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet