Probability Distribution of Hypervolume Improvement in Bi-objective Bayesian Optimization

11 May 2022  ·  Hao Wang, Kaifeng Yang, Michael Affenzeller ·

Hypervolume improvement (HVI) is commonly employed in multi-objective Bayesian optimization algorithms to define acquisition functions due to its Pareto-compliant property. Rather than focusing on specific statistical moments of HVI, this work aims to provide the exact expression of HVI's probability distribution for bi-objective problems. Considering a bi-variate Gaussian random variable resulting from Gaussian process (GP) modeling, we derive the probability distribution of its hypervolume improvement via a cell partition-based method. Our exact expression is superior in numerical accuracy and computation efficiency compared to the Monte Carlo approximation of HVI's distribution. Utilizing this distribution, we propose a novel acquisition function - $\varepsilon$-probability of hypervolume improvement ($\varepsilon$-PoHVI). Experimentally, we show that on many widely-applied bi-objective test problems, $\varepsilon$-PoHVI significantly outperforms other related acquisition functions, e.g., $\varepsilon$-PoI, and expected hypervolume improvement, when the GP model exhibits a large the prediction uncertainty.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods