Programmable Annotation with Diversed Heuristics and Data Denoising

COLING 2022  ·  Ernie Chang, Alex Marin, Vera Demberg ·

Neural natural language generation (NLG) and understanding (NLU) models are costly and require massive amounts of annotated data to be competitive. Recent data programming frameworks address this bottleneck by allowing human supervision to be provided as a set of labeling functions to construct generative models that synthesize weak labels at scale. However, these labeling functions are difficult to build from scratch for NLG/NLU models, as they often require complex rule sets to be specified. To this end, we propose a novel data programming framework that can jointly construct labeled data for language generation and understanding tasks – by allowing the annotators to modify an automatically-inferred alignment rule set between sequence labels and text, instead of writing rules from scratch. Further, to mitigate the effect of poor quality labels, we propose a dually-regularized denoising mechanism for optimizing the NLU and NLG models. On two benchmarks we show that the framework can generate high-quality data that comes within a 1.48 BLEU and 6.42 slot F1 of the 100% human-labeled data (42k instances) with just 100 labeled data samples – outperforming benchmark annotation frameworks and other semi-supervised approaches.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here