Progressive Joint Modeling in Unsupervised Single-channel Overlapped Speech Recognition

21 Jul 2017 Zhehuai Chen Jasha Droppo Jinyu Li Wayne Xiong

Unsupervised single-channel overlapped speech recognition is one of the hardest problems in automatic speech recognition (ASR). Permutation invariant training (PIT) is a state of the art model-based approach, which applies a single neural network to solve this single-input, multiple-output modeling problem... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet