Projection-free Graph-based Classifier Learning using Gershgorin Disc Perfect Alignment

NeurIPS 2021  ·  Cheng Yang, Gene Cheung, Guangtao Zhai ·

In semi-supervised graph-based binary classifier learning, a subset of known labels $\hat{x}_i$ are used to infer unknown labels, assuming that the label signal $\mathbf{x}$ is smooth with respect to a similarity graph specified by a Laplacian matrix. When restricting labels $x_i$ to binary values, the problem is NP-hard. While a conventional semi-definite programming relaxation (SDR) can be solved in polynomial time using, for example, the alternating direction method of multipliers (ADMM), the complexity of projecting a candidate matrix $\mathbf{M}$ onto the positive semi-definite (PSD) cone ($\mathbf{M} \succeq 0$) per iteration remains high. In this paper, leveraging a recent linear algebraic theory called Gershgorin disc perfect alignment (GDPA), we propose a fast projection-free method by solving a sequence of linear programs (LP) instead. Specifically, we first recast the SDR to its dual, where a feasible solution $\mathbf{H} \succeq 0$ is interpreted as a Laplacian matrix corresponding to a balanced signed graph minus the last node. To achieve graph balance, we split the last node into two, each retains the original positive / negative edges, resulting in a new Laplacian $\bar{\mathbf{H}}$. We repose the SDR dual for solution $\bar{\mathbf{H}}$, then replace the PSD cone constraint $\bar{\mathbf{H}} \succeq 0$ with linear constraints derived from GDPA -- sufficient conditions to ensure $\bar{\mathbf{H}}$ is PSD -- so that the optimization becomes an LP per iteration. Finally, we extract predicted labels from converged solution $\bar{\mathbf{H}}$. Experiments show that our algorithm enjoyed a $28\times$ speedup over the next fastest scheme while achieving comparable label prediction performance.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here