Prompt2Gaussia: Uncertain Prompt-learning for Script Event Prediction

4 Aug 2023  ·  Shiyao Cui, Xin Cong, Jiawei Sheng, Xuebin Wang, Tingwen Liu, Jinqiao Shi ·

Script Event Prediction (SEP) aims to predict the subsequent event for a given event chain from a candidate list. Prior research has achieved great success by integrating external knowledge to enhance the semantics, but it is laborious to acquisite the appropriate knowledge resources and retrieve the script-related knowledge. In this paper, we regard public pre-trained language models as knowledge bases and automatically mine the script-related knowledge via prompt-learning. Still, the scenario-diversity and label-ambiguity in scripts make it uncertain to construct the most functional prompt and label token in prompt learning, i.e., prompt-uncertainty and verbalizer-uncertainty. Considering the innate ability of Gaussian distribution to express uncertainty, we deploy the prompt tokens and label tokens as random variables following Gaussian distributions, where a prompt estimator and a verbalizer estimator are proposed to estimate their probabilistic representations instead of deterministic representations. We take the lead to explore prompt-learning in SEP and provide a fresh perspective to enrich the script semantics. Our method is evaluated on the most widely used benchmark and a newly proposed large-scale one. Experiments show that our method, which benefits from knowledge evoked from pre-trained language models, outperforms prior baselines by 1.46\% and 1.05\% on two benchmarks, respectively.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here