PromptMM: Multi-Modal Knowledge Distillation for Recommendation with Prompt-Tuning

27 Feb 2024  ·  Wei Wei, Jiabin Tang, Yangqin Jiang, Lianghao Xia, Chao Huang ·

Multimedia online platforms (e.g., Amazon, TikTok) have greatly benefited from the incorporation of multimedia (e.g., visual, textual, and acoustic) content into their personal recommender systems. These modalities provide intuitive semantics that facilitate modality-aware user preference modeling. However, two key challenges in multi-modal recommenders remain unresolved: i) The introduction of multi-modal encoders with a large number of additional parameters causes overfitting, given high-dimensional multi-modal features provided by extractors (e.g., ViT, BERT). ii) Side information inevitably introduces inaccuracies and redundancies, which skew the modality-interaction dependency from reflecting true user preference. To tackle these problems, we propose to simplify and empower recommenders through Multi-modal Knowledge Distillation (PromptMM) with the prompt-tuning that enables adaptive quality distillation. Specifically, PromptMM conducts model compression through distilling u-i edge relationship and multi-modal node content from cumbersome teachers to relieve students from the additional feature reduction parameters. To bridge the semantic gap between multi-modal context and collaborative signals for empowering the overfitting teacher, soft prompt-tuning is introduced to perform student task-adaptive. Additionally, to adjust the impact of inaccuracies in multimedia data, a disentangled multi-modal list-wise distillation is developed with modality-aware re-weighting mechanism. Experiments on real-world data demonstrate PromptMM's superiority over existing techniques. Ablation tests confirm the effectiveness of key components. Additional tests show the efficiency and effectiveness.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods