Prototype-based classifiers in the presence of concept drift: A modelling framework

18 Mar 2019Michael BiehlFthi AbadiChristina GöpfertBarbara Hammer

We present a modelling framework for the investigation of prototype-based classifiers in non-stationary environments. Specifically, we study Learning Vector Quantization (LVQ) systems trained from a stream of high-dimensional, clustered data.We consider standard winner-takes-all updates known as LVQ1... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.