Paper

Prototypical Q Networks for Automatic Conversational Diagnosis and Few-Shot New Disease Adaption

Spoken dialog systems have seen applications in many domains, including medical for automatic conversational diagnosis. State-of-the-art dialog managers are usually driven by deep reinforcement learning models, such as deep Q networks (DQNs), which learn by interacting with a simulator to explore the entire action space since real conversations are limited. However, the DQN-based automatic diagnosis models do not achieve satisfying performances when adapted to new, unseen diseases with only a few training samples. In this work, we propose the Prototypical Q Networks (ProtoQN) as the dialog manager for the automatic diagnosis systems. The model calculates prototype embeddings with real conversations between doctors and patients, learning from them and simulator-augmented dialogs more efficiently. We create both supervised and few-shot learning tasks with the Muzhi corpus. Experiments showed that the ProtoQN significantly outperformed the baseline DQN model in both supervised and few-shot learning scenarios, and achieves state-of-the-art few-shot learning performances.

Results in Papers With Code
(↓ scroll down to see all results)