Provable Bounds for Learning Some Deep Representations

23 Oct 2013Sanjeev AroraAditya BhaskaraRong GeTengyu Ma

We give algorithms with provable guarantees that learn a class of deep nets in the generative model view popularized by Hinton and others. Our generative model is an $n$ node multilayer neural net that has degree at most $n^{\gamma}$ for some $\gamma <1$ and each edge has a random edge weight in $[-1,1]$... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet