Provably Correct Automatic Subdifferentiation for Qualified Programs

23 Sep 2018  ·  Sham Kakade, Jason D. Lee ·

The Cheap Gradient Principle (Griewank 2008) --- the computational cost of computing the gradient of a scalar-valued function is nearly the same (often within a factor of $5$) as that of simply computing the function itself --- is of central importance in optimization; it allows us to quickly obtain (high dimensional) gradients of scalar loss functions which are subsequently used in black box gradient-based optimization procedures. The current state of affairs is markedly different with regards to computing subderivatives: widely used ML libraries, including TensorFlow and PyTorch, do not correctly compute (generalized) subderivatives even on simple examples. This work considers the question: is there a Cheap Subgradient Principle? Our main result shows that, under certain restrictions on our library of nonsmooth functions (standard in nonlinear programming), provably correct generalized subderivatives can be computed at a computational cost that is within a (dimension-free) factor of $6$ of the cost of computing the scalar function itself.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here