Provably Efficient Bayesian Optimization with Unbiased Gaussian Process Hyperparameter Estimation

12 Jun 2023  ·  Huong Ha, Vu Nguyen, Hongyu Zhang, Anton Van Den Hengel ·

Gaussian process (GP) based Bayesian optimization (BO) is a powerful method for optimizing black-box functions efficiently. The practical performance and theoretical guarantees associated with this approach depend on having the correct GP hyperparameter values, which are usually unknown in advance and need to be estimated from the observed data. However, in practice, these estimations could be incorrect due to biased data sampling strategies commonly used in BO. This can lead to degraded performance and break the sub-linear global convergence guarantee of BO. To address this issue, we propose a new BO method that can sub-linearly converge to the global optimum of the objective function even when the true GP hyperparameters are unknown in advance and need to be estimated from the observed data. Our method uses a multi-armed bandit technique (EXP3) to add random data points to the BO process, and employs a novel training loss function for the GP hyperparameter estimation process that ensures unbiased estimation from the observed data. We further provide theoretical analysis of our proposed method. Finally, we demonstrate empirically that our method outperforms existing approaches on various synthetic and real-world problems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here