Pruning for Improved ADC Efficiency in Crossbar-based Analog In-memory Accelerators

19 Mar 2024  ·  Timur Ibrayev, Isha Garg, Indranil Chakraborty, Kaushik Roy ·

Deep learning has proved successful in many applications but suffers from high computational demands and requires custom accelerators for deployment. Crossbar-based analog in-memory architectures are attractive for acceleration of deep neural networks (DNN), due to their high data reuse and high efficiency enabled by combining storage and computation in memory. However, they require analog-to-digital converters (ADCs) to communicate crossbar outputs. ADCs consume a significant portion of energy and area of every crossbar processing unit, thus diminishing the potential efficiency benefits. Pruning is a well-studied technique to improve the efficiency of DNNs but requires modifications to be effective for crossbars. In this paper, we motivate crossbar-attuned pruning to target ADC-specific inefficiencies. This is achieved by identifying three key properties (dubbed D.U.B.) that induce sparsity that can be utilized to reduce ADC energy without sacrificing accuracy. The first property ensures that sparsity translates effectively to hardware efficiency by restricting sparsity levels to Discrete powers of 2. The other 2 properties encourage columns in the same crossbar to achieve both Unstructured and Balanced sparsity in order to amortize the accuracy drop. The desired D.U.B. sparsity is then achieved by regularizing the variance of $L_{0}$ norms of neighboring columns within the same crossbar. Our proposed implementation allows it to be directly used in end-to-end gradient-based training. We apply the proposed algorithm to convolutional layers of VGG11 and ResNet18 models, trained on CIFAR-10 and ImageNet datasets, and achieve up to 7.13x and 1.27x improvement, respectively, in ADC energy with less than 1% drop in accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods