Public Sphere 2.0: Targeted Commenting in Online News Media

21 Feb 2019  ·  Ankan Mullick, Sayan Ghosh, Ritam Dutt, Avijit Ghosh, Abhijnan Chakraborty ·

With the increase in online news consumption, to maximize advertisement revenue, news media websites try to attract and retain their readers on their sites. One of the most effective tools for reader engagement is commenting, where news readers post their views as comments against the news articles... Traditionally, it has been assumed that the comments are mostly made against the full article. In this work, we show that present commenting landscape is far from this assumption. Because the readers lack the time to go over an entire article, most of the comments are relevant to only particular sections of an article. In this paper, we build a system which can automatically classify comments against relevant sections of an article. To implement that, we develop a deep neural network based mechanism to find comments relevant to any section and a paragraph wise commenting interface to showcase them. We believe that such a data driven commenting system can help news websites to further increase reader engagement. read more

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here