Pun-GAN: Generative Adversarial Network for Pun Generation

In this paper, we focus on the task of generating a pun sentence given a pair of word senses. A major challenge for pun generation is the lack of large-scale pun corpus to guide the supervised learning. To remedy this, we propose an adversarial generative network for pun generation (Pun-GAN), which does not require any pun corpus. It consists of a generator to produce pun sentences, and a discriminator to distinguish between the generated pun sentences and the real sentences with specific word senses. The output of the discriminator is then used as a reward to train the generator via reinforcement learning, encouraging it to produce pun sentences that can support two word senses simultaneously. Experiments show that the proposed Pun-GAN can generate sentences that are more ambiguous and diverse in both automatic and human evaluation.

Results in Papers With Code
(↓ scroll down to see all results)