Pure Exploration of Multi-armed Bandit Under Matroid Constraints

23 May 2016  ·  Lijie Chen, Anupam Gupta, Jian Li ·

We study the pure exploration problem subject to a matroid constraint (Best-Basis) in a stochastic multi-armed bandit game. In a Best-Basis instance, we are given $n$ stochastic arms with unknown reward distributions, as well as a matroid $\mathcal{M}$ over the arms. Let the weight of an arm be the mean of its reward distribution. Our goal is to identify a basis of $\mathcal{M}$ with the maximum total weight, using as few samples as possible. The problem is a significant generalization of the best arm identification problem and the top-$k$ arm identification problem, which have attracted significant attentions in recent years. We study both the exact and PAC versions of Best-Basis, and provide algorithms with nearly-optimal sample complexities for these versions. Our results generalize and/or improve on several previous results for the top-$k$ arm identification problem and the combinatorial pure exploration problem when the combinatorial constraint is a matroid.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here