QArchSearch: A Scalable Quantum Architecture Search Package

11 Oct 2023  ·  Ankit Kulshrestha, Danylo Lykov, Ilya Safro, Yuri Alexeev ·

The current era of quantum computing has yielded several algorithms that promise high computational efficiency. While the algorithms are sound in theory and can provide potentially exponential speedup, there is little guidance on how to design proper quantum circuits to realize the appropriate unitary transformation to be applied to the input quantum state. In this paper, we present \texttt{QArchSearch}, an AI based quantum architecture search package with the \texttt{QTensor} library as a backend that provides a principled and automated approach to finding the best model given a task and input quantum state. We show that the search package is able to efficiently scale the search to large quantum circuits and enables the exploration of more complex models for different quantum applications. \texttt{QArchSearch} runs at scale and high efficiency on high-performance computing systems using a two-level parallelization scheme on both CPUs and GPUs, which has been demonstrated on the Polaris supercomputer.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods