Q* Approximation Schemes for Batch Reinforcement Learning: A Theoretical Comparison

9 Mar 2020Tengyang XieNan Jiang

We prove performance guarantees of two algorithms for approximating $Q^\star$ in batch reinforcement learning. Compared to classical iterative methods such as Fitted Q-Iteration---whose performance loss incurs quadratic dependence on horizon---these methods estimate (some forms of) the Bellman error and enjoy linear-in-horizon error propagation, a property established for the first time for algorithms that rely solely on batch data and output stationary policies... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet