Quality-Aware Hydraulic Control in Drinking Water Networks via Controllability Proxies

22 Jan 2024  ·  Salma M. Elsherif, Mohamad H. Kazma, Ahmad F. Taha ·

The operation of water distribution networks is a complex procedure aimed at efficiently delivering consumers with adequate water quantity while ensuring its safe quality. An added challenge is the dependency of the water quality dynamics on the system's hydraulics, which influences the performance of the water quality controller. Prior research has addressed either solving the optimum operational hydraulic setting problem or regulating the water quality dynamics as separate problems. Additionally, there have been efforts to couple these two problems and solve one compact problem resulting in trade-offs between the contradictory objectives. In contrast, this paper takes a novel approach by examining the water quality dependency on the hydraulics from a control-theoretic standpoint. More specifically, we explore the influence of accountability for water quality controllability improvement when addressing the pump scheduling problem. We examine its effects on the cumulative cost of the interconnected systems as well as the subsequent performance of the water quality controller. To achieve this, we develop a framework that incorporates different controllability metrics within the operational hydraulic optimization problem; its aim is attaining an adequate level of water quality control across the system. We assess the aforementioned aspects' performance on various scaled networks with a wide range of numerical scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here