Quality of Word Embeddings on Sentiment Analysis Tasks

6 Mar 2020  ·  Erion Çano, Maurizio Morisio ·

Word embeddings or distributed representations of words are being used in various applications like machine translation, sentiment analysis, topic identification etc. Quality of word embeddings and performance of their applications depends on several factors like training method, corpus size and relevance etc. In this study we compare performance of a dozen of pretrained word embedding models on lyrics sentiment analysis and movie review polarity tasks. According to our results, Twitter Tweets is the best on lyrics sentiment analysis, whereas Google News and Common Crawl are the top performers on movie polarity analysis. Glove trained models slightly outrun those trained with Skipgram. Also, factors like topic relevance and size of corpus significantly impact the quality of the models. When medium or large-sized text sets are available, obtaining word embeddings from same training dataset is usually the best choice.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.