Quantifying Assurance in Learning-enabled Systems

18 Jun 2020Erfan AsaadiEwen DenneyGanesh Pai

Dependability assurance of systems embedding machine learning(ML) components---so called learning-enabled systems (LESs)---is a key step for their use in safety-critical applications. In emerging standardization and guidance efforts, there is a growing consensus in the value of using assurance cases for that purpose... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet