Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep Gradient Descent

20 Jul 2020  ·  Riccardo Barbano, Chen Zhang, Simon Arridge, Bangti Jin ·

Recent advances in reconstruction methods for inverse problems leverage powerful data-driven models, e.g., deep neural networks. These techniques have demonstrated state-of-the-art performances for several imaging tasks, but they often do not provide uncertainty on the obtained reconstruction. In this work, we develop a scalable, data-driven, knowledge-aided computational framework to quantify the model uncertainty via Bayesian neural networks. The approach builds on, and extends deep gradient descent, a recently developed greedy iterative training scheme, and recasts it within a probabilistic framework. Scalability is achieved by being hybrid in the architecture: only the last layer of each block is Bayesian, while the others remain deterministic, and by being greedy in training. The framework is showcased on one representative medical imaging modality, viz. computed tomography with either sparse view or limited view data, and exhibits competitive performance with respect to state-of-the-art benchmarks, e.g., total variation, deep gradient descent and learned primal-dual.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here