Quantifying multivariate redundancy with maximum entropy decompositions of mutual information

13 Aug 2017 Daniel Chicharro

Williams and Beer (2010) proposed a nonnegative mutual information decomposition, based on the construction of redundancy lattices, which allows separating the information that a set of variables contains about a target variable into nonnegative components interpretable as the unique information of some variables not provided by others as well as redundant and synergistic components. However, the definition of multivariate measures of redundancy that comply with nonnegativity and conform to certain axioms that capture conceptually desirable properties of redundancy has proven to be elusive... (read more)

PDF Abstract



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet