Quantifying neural network uncertainty under volatility clustering

22 Feb 2024  ·  Steven Y. K. Wong, Jennifer S. K. Chan, Lamiae Azizi ·

Time-series with time-varying variance pose a unique challenge to uncertainty quantification (UQ) methods. Time-varying variance, such as volatility clustering as seen in financial time-series, can lead to large mismatch between predicted uncertainty and forecast error. Building on recent advances in neural network UQ literature, we extend and simplify Deep Evidential Regression and Deep Ensembles into a unified framework to deal with UQ under the presence of volatility clustering. We show that a Scale Mixture Distribution is a simpler alternative to the Normal-Inverse-Gamma prior that provides favorable complexity-accuracy trade-off. To illustrate the performance of our proposed approach, we apply it to two sets of financial time-series exhibiting volatility clustering: cryptocurrencies and U.S. equities.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods