Quantifying Synchronization in a Biologically Inspired Neural Network

11 Dec 2020  ·  Pranav Mahajan, Advait Rane, Swapna Sasi, Basabdatta Sen Bhattacharya ·

We present a collated set of algorithms to obtain objective measures of synchronisation in brain time-series data. The algorithms are implemented in MATLAB; we refer to our collated set of 'tools' as SyncBox. Our motivation for SyncBox is to understand the underlying dynamics in an existing population neural network, commonly referred to as neural mass models, that mimic Local Field Potentials of the visual thalamic tissue. Specifically, we aim to measure the phase synchronisation objectively in the model response to periodic stimuli; this is to mimic the condition of Steady-state-visually-evoked-potentials (SSVEP), which are scalp Electroencephalograph (EEG) corresponding to periodic stimuli. We showcase the use of SyncBox on our existing neural mass model of the visual thalamus. Following our successful testing of SyncBox, it is currently being used for further research on understanding the underlying dynamics in enhanced neural networks of the visual pathway

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here