Quantitative Weak Convergence for Discrete Stochastic Processes

3 Feb 2019  ·  Xiang Cheng, Peter L. Bartlett, Michael. I. Jordan ·

In this paper, we quantitative convergence in $W_2$ for a family of Langevin-like stochastic processes that includes stochastic gradient descent and related gradient-based algorithms. Under certain regularity assumptions, we show that the iterates of these stochastic processes converge to an invariant distribution at a rate of $\tilde{O}\lrp{1/\sqrt{k}}$ where $k$ is the number of steps; this rate is provably tight up to log factors. Our result reduces to a quantitative form of the classical Central Limit Theorem in the special case when the potential is quadratic.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here