Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space

14 Oct 2019  ·  Quentin Mérigot, Alex Delalande, Frédéric Chazal ·

This work studies an explicit embedding of the set of probability measures into a Hilbert space, defined using optimal transport maps from a reference probability density. This embedding linearizes to some extent the 2-Wasserstein space, and enables the direct use of generic supervised and unsupervised learning algorithms on measure data. Our main result is that the embedding is (bi-)H\"older continuous, when the reference density is uniform over a convex set, and can be equivalently phrased as a dimension-independent H\"older-stability results for optimal transport maps.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here