Quantum Optimisation of Complex Systems with a Quantum Annealer

28 May 2021  ·  Steve Abel, Andrew Blance, Michael Spannowsky ·

We perform an in-depth comparison of quantum annealing with several classical optimisation techniques, namely thermal annealing, Nelder-Mead, and gradient descent. We begin with a direct study of the 2D Ising model on a quantum annealer, and compare its properties directly with those of the thermal 2D Ising model. These properties include an Ising-like phase transition that can be induced by either a change in 'quantum-ness' of the theory, or by a scaling the Ising couplings up or down. This behaviour is in accord with what is expected from the physical understanding of the quantum system. We then go on to demonstrate the efficacy of the quantum annealer at minimising several increasingly hard two dimensional potentials. For all the potentials we find the general behaviour that Nelder-Mead and gradient descent methods are very susceptible to becoming trapped in false minima, while the thermal anneal method is somewhat better at discovering the true minimum. However, and despite current limitations on its size, the quantum annealer performs a minimisation very markedly better than any of these classical techniques. A quantum anneal can be designed so that the system almost never gets trapped in a false minimum, and rapidly and successfully minimises the potentials.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here