Quantum Optimization for Training Quantum Neural Networks

31 Mar 2021  ·  Yidong Liao, Min-Hsiu Hsieh, Chris Ferrie ·

Training quantum neural networks (QNNs) using gradient-based or gradient-free classical optimisation approaches is severely impacted by the presence of barren plateaus in the cost landscapes. In this paper, we devise a framework for leveraging quantum optimisation algorithms to find optimal parameters of QNNs for certain tasks. To achieve this, we coherently encode the cost function of QNNs onto relative phases of a superposition state in the Hilbert space of the network parameters. The parameters are tuned with an iterative quantum optimisation structure using adaptively selected Hamiltonians. The quantum mechanism of this framework exploits hidden structure in the QNN optimisation problem and hence is expected to provide beyond-Grover speed up, mitigating the barren plateau issue.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here