Quantum Unsupervised and Supervised Learning on Superconducting Processors

10 Sep 2019  ·  Abhijat Sarma, Rupak Chatterjee, Kaitlin Gili, Ting Yu ·

Machine learning algorithms perform well on identifying patterns in many different datasets due to their versatility. However, as one increases the size of the dataset, the computation time for training and using these statistical models grows quickly. Quantum computing offers a new paradigm which may have the ability to overcome these computational difficulties. Here, we propose a quantum analogue to K-means clustering, implement it on simulated superconducting qubits, and compare it to a previously developed quantum support vector machine. We find the algorithm's accuracy comparable to the classical K-means algorithm for clustering and classification problems, and find that it has asymptotic complexity $O(N^{3/2}K^{1/2}\log{P})$, where $N$ is the number of data points, $K$ is the number of clusters, and $P$ is the dimension of the data points, giving a significant speedup over the classical analogue.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here