Quaternion Equivariant Capsule Networks for 3D Point Clouds

ECCV 2020 Yongheng ZhaoTolga BirdalJan Eric LenssenEmanuele MenegattiLeonidas GuibasFederico Tombari

We present a 3D capsule module for processing point clouds that is equivariant to 3D rotations and translations, as well as invariant to permutations of the input points. The operator receives a sparse set of local reference frames, computed from an input point cloud and establishes end-to-end transformation equivariance through a novel dynamic routing procedure on quaternions... (read more)

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet