Quick and Simple Approach for Detecting Hate Speech in Arabic Tweets

LREC 2020  ·  Abeer Abuzayed, Tamer Elsayed ·

As the use of social media platforms increases extensively to freely communicate and share opinions, hate speech becomes an outstanding problem that requires urgent attention. This paper focuses on the problem of detecting hate speech in Arabic tweets. To tackle the problem efficiently, we adopt a {``}quick and simple{''} approach by which we investigate the effectiveness of 15 classical (e.g., SVM) and neural (e.g., CNN) learning models, while exploring two different term representations. Our experiments on 8k labelled dataset show that the best neural learning models outperform the classical ones, while distributed term representation is more effective than statistical bag-of-words representation. Overall, our best classifier (that combines both CNN and RNN in a joint architecture) achieved 0.73 macro-F1 score on the dev set, which significantly outperforms the majority-class baseline that achieves 0.49, proving the effectiveness of our {``}quick and simple{''} approach.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here