Quickly Finding the Best Linear Model in High Dimensions

3 Jul 2019Yahya SattarSamet Oymak

We study the problem of finding the best linear model that can minimize least-squares loss given a data-set. While this problem is trivial in the low dimensional regime, it becomes more interesting in high dimensions where the population minimizer is assumed to lie on a manifold such as sparse vectors... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet