Radial Basis Feature Transformation to Arm CNNs Against Adversarial Attacks

ICLR 2019 Saeid Asgari TaghanakiShekoofeh AziziGhassan Hamarneh

The linear and non-flexible nature of deep convolutional models makes them vulnerable to carefully crafted adversarial perturbations. To tackle this problem, in this paper, we propose a nonlinear radial basis convolutional feature transformation by learning the Mahalanobis distance function that maps the input convolutional features from the same class into tight clusters... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet