Radial Basis Feature Transformation to Arm CNNs Against Adversarial Attacks

The linear and non-flexible nature of deep convolutional models makes them vulnerable to carefully crafted adversarial perturbations. To tackle this problem, in this paper, we propose a nonlinear radial basis convolutional feature transformation by learning the Mahalanobis distance function that maps the input convolutional features from the same class into tight clusters. In such a space, the clusters become compact and well-separated, which prevent small adversarial perturbations from forcing a sample to cross the decision boundary. We test the proposed method on three publicly available image classification and segmentation data-sets namely, MNIST, ISBI ISIC skin lesion, and NIH ChestX-ray14. We evaluate the robustness of our method to different gradient (targeted and untargeted) and non-gradient based attacks and compare it to several non-gradient masking defense strategies. Our results demonstrate that the proposed method can boost the performance of deep convolutional neural networks against adversarial perturbations without accuracy drop on clean data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here