RAFP-Pred: Robust Prediction of Antifreeze Proteins using Localized Analysis of n-Peptide Compositions

25 Sep 2018  ·  Shujaat Khan, Imran Naseem, Roberto Togneri, Mohammed Bennamoun ·

In extreme cold weather, living organisms produce Antifreeze Proteins (AFPs) to counter the otherwise lethal intracellular formation of ice. Structures and sequences of various AFPs exhibit a high degree of heterogeneity, consequently the prediction of the AFPs is considered to be a challenging task. In this research, we propose to handle this arduous manifold learning task using the notion of localized processing. In particular an AFP sequence is segmented into two sub-segments each of which is analyzed for amino acid and di-peptide compositions. We propose to use only the most significant features using the concept of information gain (IG) followed by a random forest classification approach. The proposed RAFP-Pred achieved an excellent performance on a number of standard datasets. We report a high Youden's index (sensitivity+specificity-1) value of 0.75 on the standard independent test data set outperforming the AFP-PseAAC, AFP\_PSSM, AFP-Pred and iAFP by a margin of 0.05, 0.06, 0.14 and 0.68 respectively. The verification rate on the UniProKB dataset is found to be 83.19\% which is substantially superior to the 57.18\% reported for the iAFP method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here