Random Bias Initialization Improving Binary Neural Network Training

25 Sep 2019  ·  Xinlin Li, Vahid Partovi Nia ·

Edge intelligence especially binary neural network (BNN) has attracted considerable attention of the artificial intelligence community recently. BNNs significantly reduce the computational cost, model size, and memory footprint. However, there is still a performance gap between the successful full-precision neural network with ReLU activation and BNNs. We argue that the accuracy drop of BNNs is due to their geometry. We analyze the behaviour of the full-precision neural network with ReLU activation and compare it with its binarized counterpart. This comparison suggests random bias initialization as a remedy to activation saturation in full-precision networks and leads us towards an improved BNN training. Our numerical experiments confirm our geometric intuition.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here