Random Projections and Sampling Algorithms for Clustering of High-Dimensional Polygonal Curves

We study the $k$-median clustering problem for high-dimensional polygonal curves with finite but unbounded number of vertices. We tackle the computational issue that arises from the high number of dimensions by defining a Johnson-Lindenstrauss projection for polygonal curves. We analyze the resulting error in terms of the Fr\'echet distance, which is a tractable and natural dissimilarity measure for curves. Our clustering algorithms achieve sublinear dependency on the number of input curves via subsampling. Also, we show that the Fr\'echet distance can not be approximated within any factor of less than $\sqrt{2}$ by probabilistically reducing the dependency on the number of vertices of the curves. As a consequence we provide a fast, CUDA-parallelized version of the Alt and Godau algorithm for computing the Fr\'echet distance and use it to evaluate our results empirically.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here