Randomized Approximation of the Gram Matrix: Exact Computation and Probabilistic Bounds

5 Oct 2013  ·  John T. Holodnak, Ilse C. F. Ipsen ·

Given a real matrix A with n columns, the problem is to approximate the Gram product AA^T by c << n weighted outer products of columns of A. Necessary and sufficient conditions for the exact computation of AA^T (in exact arithmetic) from c >= rank(A) columns depend on the right singular vector matrix of A. For a Monte-Carlo matrix multiplication algorithm by Drineas et al. that samples outer products, we present probabilistic bounds for the 2-norm relative error due to randomization. The bounds depend on the stable rank or the rank of A, but not on the matrix dimensions. Numerical experiments illustrate that the bounds are informative, even for stringent success probabilities and matrices of small dimension. We also derive bounds for the smallest singular value and the condition number of matrices obtained by sampling rows from orthonormal matrices.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here