Randomized sketches for kernels: Fast and optimal non-parametric regression

25 Jan 2015  ·  Yun Yang, Mert Pilanci, Martin J. Wainwright ·

Kernel ridge regression (KRR) is a standard method for performing non-parametric regression over reproducing kernel Hilbert spaces. Given $n$ samples, the time and space complexity of computing the KRR estimate scale as $\mathcal{O}(n^3)$ and $\mathcal{O}(n^2)$ respectively, and so is prohibitive in many cases. We propose approximations of KRR based on $m$-dimensional randomized sketches of the kernel matrix, and study how small the projection dimension $m$ can be chosen while still preserving minimax optimality of the approximate KRR estimate. For various classes of randomized sketches, including those based on Gaussian and randomized Hadamard matrices, we prove that it suffices to choose the sketch dimension $m$ proportional to the statistical dimension (modulo logarithmic factors). Thus, we obtain fast and minimax optimal approximations to the KRR estimate for non-parametric regression.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here