Randomness in Deconvolutional Networks for Visual Representation

2 Apr 2017  ·  Kun He, Jingbo Wang, Haochuan Li, Yao Shu, Mengxiao Zhang, Man Zhu, Li-Wei Wang, John E. Hopcroft ·

Toward a deeper understanding on the inner work of deep neural networks, we investigate CNN (convolutional neural network) using DCN (deconvolutional network) and randomization technique, and gain new insights for the intrinsic property of this network architecture. For the random representations of an untrained CNN, we train the corresponding DCN to reconstruct the input images. Compared with the image inversion on pre-trained CNN, our training converges faster and the yielding network exhibits higher quality for image reconstruction. It indicates there is rich information encoded in the random features; the pre-trained CNN may discard information irrelevant for classification and encode relevant features in a way favorable for classification but harder for reconstruction. We further explore the property of the overall random CNN-DCN architecture. Surprisingly, images can be inverted with satisfactory quality. Extensive empirical evidence as well as theoretical analysis are provided.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here