Razumikhin and Krasovskii Approaches for Safe Stabilization

26 Apr 2022  ·  Wei Ren, Raphael M. Jungers, Dimos V. Dimarogonas ·

This paper studies the stabilization and safety problems of nonlinear time-delay systems. Following both Razumikhin and Krasovskii approaches, we propose novel control Lyapunov functions/functionals for the stabilization problem and novel control barrier functions/functionals for the safety problem. The proposed control Lyapunov and barrier functions/functionals extend the existing ones from the delay-free case to the time-delay case, and allow for designing the stabilizing and safety controllers in closed-form. Since analytical solutions to time-delay optimal control problems are hard to be achieved, a sliding mode control based approach is developed to merge the proposed control Lyapunov and barrier functions/functionals. Based on the sliding surface functional, a feedback control law is established to investigate the stabilization and safety objectives simultaneously. In particular, the properties of the sliding surface functional are analyzed, and further how to construct the sliding surface functional is discussed. Finally, the proposed approaches are illustrated via two numerical examples from the connected cruise control problem of automotive systems and the synchronization problem of multi-agent systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here