Real-time 2D/3D Registration via CNN Regression

27 Jul 2015Shun MiaoZ. Jane WangRui Liao

In this paper, we present a Convolutional Neural Network (CNN) regression approach for real-time 2-D/3-D registration. Different from optimization-based methods, which iteratively optimize the transformation parameters over a scalar-valued metric function representing the quality of the registration, the proposed method exploits the information embedded in the appearances of the Digitally Reconstructed Radiograph and X-ray images, and employs CNN regressors to directly estimate the transformation parameters... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet