REALab: An Embedded Perspective on Tampering

17 Nov 2020  ·  Ramana Kumar, Jonathan Uesato, Richard Ngo, Tom Everitt, Victoria Krakovna, Shane Legg ·

This paper describes REALab, a platform for embedded agency research in reinforcement learning (RL). REALab is designed to model the structure of tampering problems that may arise in real-world deployments of RL. Standard Markov Decision Process (MDP) formulations of RL and simulated environments mirroring the MDP structure assume secure access to feedback (e.g., rewards). This may be unrealistic in settings where agents are embedded and can corrupt the processes producing feedback (e.g., human supervisors, or an implemented reward function). We describe an alternative Corrupt Feedback MDP formulation and the REALab environment platform, which both avoid the secure feedback assumption. We hope the design of REALab provides a useful perspective on tampering problems, and that the platform may serve as a unit test for the presence of tampering incentives in RL agent designs.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here