Reasoning About Pragmatics with Neural Listeners and Speakers

EMNLP 2016 Jacob AndreasDan Klein

We present a model for pragmatically describing scenes, in which contrastive behavior results from a combination of inference-driven pragmatics and learned semantics. Like previous learned approaches to language generation, our model uses a simple feature-driven architecture (here a pair of neural "listener" and "speaker" models) to ground language in the world... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet