Recht-Ré Noncommutative Arithmetic-Geometric Mean Conjecture is False

2 Jun 2020  ·  Zehua Lai, Lek-Heng Lim ·

Stochastic optimization algorithms have become indispensable in modern machine learning. An unresolved foundational question in this area is the difference between with-replacement sampling and without-replacement sampling -- does the latter have superior convergence rate compared to the former? A groundbreaking result of Recht and R\'e reduces the problem to a noncommutative analogue of the arithmetic-geometric mean inequality where $n$ positive numbers are replaced by $n$ positive definite matrices. If this inequality holds for all $n$, then without-replacement sampling indeed outperforms with-replacement sampling. The conjectured Recht-R\'e inequality has so far only been established for $n = 2$ and a special case of $n = 3$. We will show that the Recht-R\'e conjecture is false for general $n$. Our approach relies on the noncommutative Positivstellensatz, which allows us to reduce the conjectured inequality to a semidefinite program and the validity of the conjecture to certain bounds for the optimum values, which we show are false as soon as $n = 5$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here