Reconfigurable Holographic Surface: A New Paradigm to Implement Holographic Radio

28 Dec 2022  ·  Ruoqi Deng, Yutong Zhang, Haobo Zhang, Boya Di, Hongliang Zhang, Lingyang Song ·

Ultra-massive multiple-input multiple-output (MIMO) is one of the key enablers in the forthcoming 6G networks to provide high-speed data services by exploiting spatial diversity. In this article, we consider a new paradigm termed holographic radio for ultra-massive MIMO, where numerous tiny and inexpensive antenna elements are integrated to realize high directive gain with low hardware cost. We propose a practical way to enable holographic radio by a novel metasurface-based antenna, i.e., reconfigurable holographic surface (RHS). Specifically, RHSs incorporating densely packed tunable metamaterial elements are capable of holographic beamforming. Based on the working principle and hardware design of RHSs, we conduct full-wave analyses of RHSs and build an RHS-aided point-to-point communication platform supporting real-time data transmission. Both simulated and experimental results show that the RHS has great potential to achieve high directive gain with a limited size, thereby substantiating the feasibility of RHS-enabled holographic radio. Moreover, future research directions for RHS-enabled holographic radio are also discussed.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here