Reconstructing NER Corpora: a Case Study on Bulgarian

The paper reports on the usage of deep learning methods for improving a Named Entity Recognition (NER) training corpus and for predicting and annotating new types in a test corpus. We show how the annotations in a type-based corpus of named entities (NE) were populated as occurrences within it, thus ensuring density of the training information... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet