Recovering PCA from Hybrid-$(\ell_1,\ell_2)$ Sparse Sampling of Data Elements

2 Mar 2015  ·  Abhisek Kundu, Petros Drineas, Malik Magdon-Ismail ·

This paper addresses how well we can recover a data matrix when only given a few of its elements. We present a randomized algorithm that element-wise sparsifies the data, retaining only a few its elements. Our new algorithm independently samples the data using sampling probabilities that depend on both the squares ($\ell_2$ sampling) and absolute values ($\ell_1$ sampling) of the entries. We prove that the hybrid algorithm recovers a near-PCA reconstruction of the data from a sublinear sample-size: hybrid-($\ell_1,\ell_2$) inherits the $\ell_2$-ability to sample the important elements as well as the regularization properties of $\ell_1$ sampling, and gives strictly better performance than either $\ell_1$ or $\ell_2$ on their own. We also give a one-pass version of our algorithm and show experiments to corroborate the theory.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here