Recovery of Sparse Probability Measures via Convex Programming

NeurIPS 2012 Mert PilanciLaurent E. GhaouiVenkat Chandrasekaran

We consider the problem of cardinality penalized optimization of a convex function over the probability simplex with additional convex constraints. It's well-known that the classical L1 regularizer fails to promote sparsity on the probability simplex since L1 norm on the probability simplex is trivially constant... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet